ucsd-psystem-xc
UCSD p-System Cross Compiler

Reference Manual

Peter Miller
<pmiller@opensource.grau>

This document describes ucsd-psystem-xc version 0.13
and was prepared 12 Xamber 2012.

This document describing the ucsd-psystem-xc package, and the ucsd-psystem-xc utility pro-
grams, are
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option)\alater version.

This program is distributed in the hope that it will be useful VAITHOUT ANY WARRANTY,
without even the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

The READMEfle 1

Release Notes . . . G e e 3

How to build ucsd- psystem XC. . . 2
Internals factory factory factories: Abandon aII\ﬂ(Df control Ye vvho enter here 15

Reference Manual ucsd-psystem-xc iii

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

Reference Manual ucsd-psystem-xc vi

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

NAME
ucsd-psystem-xc — UCSD p-System Pascal cross compiler

DESCRIPTION
Theucsd-psystem-xgackage is a collection of tools for compiling Pascal source files to produce UCSD
p_System codeélés. Thepackage includes:

ucsdpsyfl)
A laucher to run the virtual machine comfortably from the command line. It includes a batch

mode for automating (scripting) operations.

ucsdpsys_assemkig
The cross assemblelt is ale to assemble geral different target microprocessor architectures
in the one recutable.

ucsdpsys_compilt)
The cross compilerlt understands the UCSD Pascal dialect, including UNIT definitions and
references.

ucsdpsys_depends
May be used to determine include file dependencies, for usenakti1) and other build tools.
ucsdpsys_disassem{le
For disassembling UCSD p-System coded. Thisis used to verify the correctness of the
compiler.

ucsdpsys_downcadg
A untility for corverting Pascal code to lower case, leaving string constants and comments
unaltered.

ucsdpsys_erro4)
A utility to translate back and forth between text and binary representations of the assembler error
message files.

ucsdpsys_libmdp)
A utility for printing segment maps of UCSD p-System library files.

ucsdpsys_librariafi)
A utility for manipulating the segments within UCSD p-System codefiles.

ucsdpsys_lin|d)
A utility for linking UCSD p-System codefiles to their assembler components.

ucsdpsys_opcodgs
A utility to translate back and forth between text and binary representations of the assembler
opcode files.

ucsdpsys_set(p)
A utility to translate back and forth between text and binary representations of the
system.miscinfo file.

Sister Projects
Some other projects will be of interest to you.

ucsd-psystem-fs
This package contains tools for manipulating UCSD p-Systemyfldigk images, and a file
system for mounting them in Linux as real file systems.
http://ucsd-psystem-fs.sourceforge.net/

ucsd-psystem-os
This project provides a self-hosting set of system sounéas.need the disk images produced by
this project for the virtual machine toveaa ‘system.pascal” file to run (this provides runtime
support and the user commanaautive). Thisis a work in progress.

Reference Manual ucsd-psystem-xc 1

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

uvsd-psystem-vm
This package provides a fully featured UCSD p-Machine emulator.

ARCHIVE SITE
The latest version afcsd-psystem-xe available on the Web from:

URL: http://ucsd-psystem-xc.sourcejernet/
File: ucsd-psystem-xc-0.13.README # Description, from the tar file

File: ucsd-psystem-xc-0.13.Ism # Description, LSM format
File: ucsd-psystem-xc-0.13.19z #the complete source
File: ucsd-psystem-xc-0.13.pdf # Reference Manual

BUILDING ucsd-psystem-xc
Full instructions for buildingicsd-psystem-xmay be found in thBUILDING file included in this
distribution.

COPYRIGHT
ucsd-psystem-xeersion 0.13
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) ary later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANqithout
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should hae received a @py of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in the.ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 2

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

RELEASE NOTES
This section details the features and bug fixes of each of the releases.

Version 0.13 (2012-Nov-12)

Theucsdpsys_chargdt) command ne understands more font file formats, including Terak and PSF
Tools format.

Theucsdpsys_chargdf) command has a newegative option, that is used to calculate thearted
“top half” of a font from the normal “bottom half”, as is common in Terak fonts.

Theucsdpsys_chargd) is nov able manipulate the boot logo in Terak system.charset files.
Theucsdpsys_osmakgédn command ne takes advantage of recantsdpsys_osmakgdn features.

There is a newcsdpsys_fo{d) command, used to comt UCSD Pascalfoto files into.png files,
andvice versa

Version 0.12 (2012-Nov-02)

Theucsdpsys_osmakgédn command ne understands heto process SYSTEM.CHARSET files.

There is a newmcsdpsys_osmakgdn option called-—arch—from-host , that may be used to
translate a host name.§.“Terak”) into an arch namee(g. “pdp11”).

Theucsdpsys_chargdt) command ne understands a—architecture=terak option, which
means to work on a SYSTEM.CHARSET file suitable for a Terak system, where the glyphs are 8x10 and
laid out differently in the binary file.

Version 0.11 (2012-Jul-28)

Kai Henningsen <kai.extern@gmail.com> digaed that 'Makefile’ files generated by
ucsdpsys_osmakgen did not correctly support the 'distclean’ target. This has been corrected.

Work is in progress to be able to cope with multiple p-machine versions.
The compiler is ne able to cope with variables declared in plain units.

Theucsdpsys_osmakgédn command ne understands heto generate the necessary debian/ files for
building a debian package from the ucsd p-system operating system sources.

Thw ucsdpsygl) file no longer creates the implied system disk image if one of the supplied disk images
is a functioning system disk.

Theucsdpsyél) command ne better understands where ucsd-psystem-os installs its files, which it
needs in order to build the default system disk image.

Version 0.10 (2011-May-18)

A bug which caused a segfault in thiesdpsys ——batcloption has been fixed.

Theucsdpsys_osmakgdn command, used by the ucsd-psystem-os project to geneidekidile
now understands the presence of man pages, and installs them appropriately.

Version 0.9 (2011-Feb-02)

Reference Manual ucsd-psystem-xc 3

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

» The slides of the LCA 2011 talk "Factory Factory Factories" ¢ a@ilable in the web site.
» Theucsdpsys_osmakgdn command has been impsol, with a viev to Debian packaging of the OS.

» Theucsdpsyfl) command has a new-no—systemoption, to suppress the construction of a system disk
image.

e There is a newcsdpsys_compilg) option,——library—path for adding directories to the library search
path.

e Theucsdpsys_compil) command no fully supports thé*$U filename *) control comment.

» Theucsdpsys_assemllg command ne understands thesrror.print.sbttltitle pseudo-
ops, mostly named for PDP-11 assmebler pseudo-ops of the same name.

» Theucsdpsys_chargdf) command has been wenl to this project, out of the ucsd-psystem-fs project.

» Theucsdpsys_assemllg command ne understands heto produce assembler listings, using tie
option. Seaicsdpsys_assemlilg for more information.

e Theucsdpsys_compil) command ne issues warnings for unreachange statements. There is a new
(*$warning unreachable false *) control comment to disable the warning.

» The project download web pagewmtncludes a link to the LunchPad PPA, where pre-compiled Ubuntu
packages arevailable.

» Theucsdpsys_assemklg command ne understands theef pseudo-op, and generates the
appropriate relocation information.

» Theucsdpsys_assemklg command ne more closely emulates the UCSD natessemblerin the way
it forgets symbols created between gm®c and anotherThis stops historical source files from
complaining about multiply defined symbols alieothe place.

» Theucsdpsys_assemllg command ne requires that the architecture be explicitly stated, either with
the.arch pseudo-op, or the—arch command line option, in all cases.

» Theucsdpsys_assemklg command ne ignores all input after thend directive.

» Theucsdpsys_assemb{éj command ne understandsgt greater thar= greater than or equalt
less thang= less than or equat> inequality and = equality comparisons.

» Theucsdpsys_assemklg command, ne understands, for 6502 opcodeswio relocate segment
relative aldresses for absolute addressing opcodes.

e Theucsdpsys_assemllg command ne understands conditional assembfy , .else and.endc
pseudo-op direoctes.

» Theucsdpsys_assemb{éj command ne understands thenacro pseudo-op, for defining an
substituting macros into the code stream.

» Abug has been fixed in the code that checks codefiles for validity longer rejects segment
dictionaries with zero-length UNITSEGgeents. Thesare produced when a program USES a non-
intrinsic unit, but is not yet linked.

Version 0.8 (2010-Aug-28)

Reference Manual ucsd-psystem-xc 4

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

» Theucsdpsys_assemkilg cross assembler wainderstands thdunc pseudo-op.

» The error message formatting has been changed to use a 4 character hanging indent for multi-line error
messages.

» Abug has been fixed in theesdpsys_osmakgdn command, it n@ correctly understands fcto
remove g/stem segments from libraries with an assembler component.

» Theucsdpsys_osmakgdn command n@ understands o to link Pascal programs with their assembler
components.

» A bug has been fixed in theesdpsydl) command, it no longer fails if its temporary files are unlinked
twice.

» There is a newcsdpsys_compilg) ——view—path option, symmetric with thacsdpsys_assemkilg and
ucsdpsys_depends commands’ options of the same name.

» Theucsdpsys_assemklg command ne understands théncude pseudo-op. Thigs also a new
corresponding-l command line option.

» Abug has been fixed in theesdpsys_librariafl) command, it n@ patches the segment number in the
procedure dictionary when it renumbers a segment.

» Abug has been fixed in theesdpsys_disassemfdg anducsdpsys_libmdf) commands, thewere
printing SEPPROC link information incorrectly.

» Theucsdpsys_osmakgdn command nw generates an “install” target, so that the results of the build
can be installed into the system.

e Theucsdpsys_assemklg cross assembler wayroks unary minus (—e) unary plus (+e) bit-wise and (el
& e2), bit-wise or (el | e2), bit-wise not ("e), bit-wise exslesr (el " e2), and modulo (el % e2)
expressions.

e Theucsdpsys_compil) cross compiler can mocope with VAR clauses in the IMPLEMEMTION
section of a UNIT.

» Theucsdpsys_compilt) cross compiler is moable to cope with units that export variables, noth
intrinsic and non-intrinsic.

» Theucsdpsys_compilg) grammar ne understands “var anything” parameters to external assembler
procedures and functions.

» Theucsdpsys_osmakgdn command nw understands assembler source file include dependencies.

» Theucsdpsys_depends command ne understands heto process assembler source files, when
looking for include dependencies.

» Theucsdpsys_assemklg command ne procuces minimally correct relocation data sectiosn for each
native wde procedure. Thacsdpsys_disassem{de command n@ has a minimally correct
understanding of relocation data.

» There is a newcsdpsys_linfd) command, that may be used to link programs and libraries of separate
procedures and functions togetherproduce &ecutable output codiés. Seaucsdpsys_lini) for
more information.

» Theucsdpsys_libmdf) anducsdpsys_disassem{dg commands ne include the EOFMARK link
information record, to be sure it contains the correquiraent. Thaicsdpsys_assemfilg and
ucsdpsys_compilé) commands ne correctly generate EOFMARK link information records.

» Theucsdpsys_littordll) command nw correctly translatesil to NULL

» Theucsdpsys_littordll) command nw expandswith variables completely This preserves the
semantics into the C++ code.

e There is nw a kuild dependengcon thelibexplainproject (http://libexplain.sourceforge.net/).

» Abug has been fixed in theesdpsyfl) command, it no longewerwrite its own temporanyiles. All of
theucsdpsyél) options nw havelong versions as well. The UCSD p-System volumes that are created

Reference Manual ucsd-psystem-xc 5

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

on-the-fly are ne created large enough to hold all of the data.

e Theucsdpsys_osmakgdn command is n@ able to figure out when it needs to neak ®py of
system/globals.text based on include dependgnnformation and the source file manifest.

e Thefor statement no understandseal controlariables. Notehat the natie compiler does not
allow this.

» Theucsdpsys_assemkilg cross assembler wainderstands thelef pseudo-op.

Version 0.7 (2010-Jun-21)
» There is a newcsdpsys_osmakgdn command, used to write thakefile for the ucsd-psystem-os
project.

» Theucsdpsys_set(p) command nw accepts ar-—arch option, in order to select the bytexs# the
SYSTEM.MISCINFOfile it generates.

» There is a newcsdpsys_errofd) command, to translating the assembler error files from text to binary.

» Theucsdpsys_opco® command ne understands the opcode file format used by the UCSD Adapti
Assembler.

» Abug has been fixed in theesdpsys _depend3 command, it no longer writes to a file called “~" when
it should write to the standard output.

e Theucsdpsys_librariafl) command has a newremove-system-segments option, used to
remove dummy segments from@&sU-*) utility.

e Theucsdpsys_librariafl) command is ne able to renumber segments whemythee transferred
bwtween codefiles.

e Theucsdpsys_compil#) command has a new-hostoption, that allows you to set the bytecsased
on the name of the host. Which helps those of us whd decéssarily remember what endian-ness all
of the hosts actually are.

e Theucsdpsys_assemllg command has a new-architecture option, to permit the target architecture
to be set from the command line.

e Theucsdpsys_assemkilg multi-target cross assemblemnbas the beginnings of support for PDP-11
assembler.

» The cross compiler is moable to recognize the ord/odd hack (used to gain access to bit-wise opcodes)
and turn such expression trees from logical operations into bit-wise operations.

» The disassembler no longer rejects valid machine code segments with very short procedures.

» Theucsdpsys_assemklg multi-target cross assemblemnbas beginnings of 6502 support, including
both the MosTech syntax and the Apple syntax.

» Abug has been fixed in the cross compilenow generates the correct opcode for the inline-math sqrt
function.

e The assembler mohas aradix pseudo-op, that may be used to change the default radix being used
by the assembler.

» Abug has been fixed in repeat/until statements, it was generating no code in some cases.
Version 0.6 (2010-May-30)

Reference Manual ucsd-psystem-xc 6

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

The compiler nv understands EXTERNAL function and procedure declarations, and produces
corresponding linker records.

The compiler nv has complete long integer support.
The compiler nv understands the built-in STR function.

It is now possible to write long integer constants in the source codey tikethe same forms as other
integer constants, except yhare sufixed with the letter L. This is an idea transplanted from C, the
UCSD natve mmpiler does not recognise such constants. It makes testing and debugging the long
integer constant folding much easier.

The compiler nv understandsinit definitions, using Il.1 syntax and semantics. If Beparate
unit definitions are seen, theesult in a warning, and tteeparate keyword is otherwise ignored.

The compiler nv understands a C-style ternary operator expregsibr? e2 : e3) . The UCSD
native cmpiler doesn’havethis.

Version 0.5 (2010-May-17)

There is a neW*$feature underscore-significant true*) contol comment, that may be
used for increased ISO 10206 conformance.

A bug has been fixed in the RECORD code, it no longer places the selector variable in the variant part of
the record, and thus is no longer requesting memory from NEW that is one word short.

There is a neW*$feature efj-nfj false*) control comment to turn bfhe use of the EFJ and
NFJ opcodes.

There is a neW$feature short-with false*) control comment, that can be used to turn off
WITH statement optimizations.

The built-in UNITWRITE procedure moaccepts string constants for the second paramétes UCSD
native cmpiler did not allav this. Handyfor debugging the system 1/O procedures.

The compiler nav optimizes IF stratements with GO dauses. Ihow goes directly to the label from
the condition, when possible, rather than using UJP in the individual clauses.

The IF statement mogenerates better code for the case where THEN is empty but ELSE is not.

The compiler nv understands the ISO 10206 integer constants with an explicit radix. This was not
available in the UCSD naté compiler, for obvious reasons.

The is a newucsdpsys_setp) command, used to encode and decodSW&TEM.MISCINFOfile.

There is a newmcsdpsys_downcadg command, that may be used toahidentifiers in Pascal source
code from upper case to lower case.

The compiler no longer has a problem with sets passed as parameters. The way sets are push onto the
stack has been further optimized.

The compiler nv understands heto optimize avay MOVELEFT, MOVERIGHT and FILLCHAR with
a constant zero or mgtive length.

A bug has been fixed in the IN operatiorthe case where the set had a fixed size.

A bug has been fixed in the constant folding of string comparisons, it was getting relational comparisons
(<, <=, >, >=) wrong, but equality comparisons (=, <>) right.

A bug has been fixed in the indexing of byte arrays (pointers) with enum types. It no longer throws an
assert.

The compiler nav issues warnings for comments that are not ISO 7185 comforming.

A bug has been fixed in the code generation oMWPcodes, in the case where more than 127 words
had to be meed.

The compiler nv understandarctan (ISO 10206) as a synonym fatan , but only if (*$feature
inline-math true*) is in effect.

Reference Manual ucsd-psystem-xc 7

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

» The compiler nav generates correct code for NNMbgical expressions assigned to a boolean variable, or
passed as a boolean parameter.

» Abug has been fixed in the code that folds constant MPI (integer multiply) expressions.
» A bug has been fixed in the optimization of integer subtraction.

» A bug has been fixed in the optimization of the ADI (add integer) expression.

» Abug has been fixed in the optimisation of the logicallN&pression.

» The cross compiler mounderstands the bit-wise integer AND, OR andiN&pressions.

» The compiler nav generates LDB (load byte) and STB (store byte) instructions for packed arrays of 8-bit
things, not just packed array of chdis is the same behaviour as the UCSDveatimpiler.

e There is a newcsdpsys_librarial) —R option, that can be used to remeaegments by name or by
number.

Version 0.4 (2010-May-06)
» Abug has been fixed in the code generation for large set constants.

» The CASE statement nounderstands rggtive case values.

e The compiler nev understands he to cast string constants into packed-array-of-char constants, when
they are procedure and functions parameters.

» The compiler nav understands when a case control expression is a function call with no parameters.
» The compiler nav understands functions calls with no parameters on either side of the IN operator.

» The compiler nav generates the correct code for segment procedures that are declared forward.

» The compiler nav understands heto pass parameters that are records, by value.

» The compiler nav generates correct code for array parameters whgratbgassed by value.

» Abug has been fixed in the READLN code generation, it no longer throws an assert.

» The compiler no longer issues syntax errors when semicolons appear in questionable places in RECORD
declarations.

» The way symbol conflicts and shadows are calaculated has been changed, it was getting feésenpositi
the conflict tests.

» The compiler nav understands passing a string as the first parameter to the FILLCHAR procedure.
e The compiler nev understands the unary plus operator.

» The compiler nav understands the built-in GEGOTOXY, PAGE, PUT, SEEK, UNITSTATUS and
UNITWAIT procedures.

* There is a n@ (*$feature inline-math true*) control comment. When this is enabled, the compiler now
understands the built-inTAN, COS, EXPLN, LOG, SIN and SQRfunctions.

e There is a newcsdpsys_assemlil¢ command, that may be used to assemble machine code and p-code.
It isn’t particularly capable, as yet, but it will become more so as work proceeds on the p-machine
vaidation

» The compiler nav accepts for loops of char values where one or both limits are char constants.

» The built-in FILLCHAR procedure mo accepts its third paramater being an enumerated type. This is for
backwards compatibility with the UCSD naticompiler.

e The compiler nav understands hw to index an aray by a charalue. Preiously it was throwing an
assert.

» There is a ne@ (*$feature ignore-undefined-segment-zero true *) option, that can be used to turn off
checking for undefined forward declarations, when those symbols would be in segment zero. This
“feature” is used by system utilities. All other cases of forward functions being undefined result in a
fatal error; use EXTERNAL for procedures to be linked later.

Reference Manual ucsd-psystem-xc 8

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

The disassembler canw@ope with broken pointers in a segmemrocedure dictionaryUsually
undefined (external) procedures withvea 2ro (0) entry in the procedure table.

The string parameters length check isvrmowarning, rather than an errofhis is because the implicit
copy at run-time will throv a un-time error of the string doesfit.

The compiler nav accepts calls to the built-in EOF and EOLN functions with no parameters.

The code generation for empty set constant has beenviedprti no longer throws an assert. The same
assert reealed that empty sets as a function parameter was not correctly being cast to the appropriate
type of set.

Version 0.3 (2010-Apr-25)

A warning is nwv issued if a case statement containstherwise clause. %u can disable the
warning by using th€*$warning otherwise false*) control comment.

The compile listing me includes the symbol table for each procedure and function.

A bug has been fixed in the code that derefereces pointers to strings. It no longer tries to laod the whole
string onto the stack. The compilennanderstands heto deal with string-typed fields on the right
hand side of dot (expr.name) expressions.

A bug has been fixed where function parameters that were the names of functions that had no parameters
were not being called.

The compiler no longer issues duplicate label warnings. In some

cases it was issuing warnings about unused labels twice.

The compiler nv understands the built-in COPBELETE, EOF EOLN, FILLCHAR, INSERT, POS,
UNITBUSY and UNITCLEAR functions and procedures.

The compiler no loger throws an assert if a procedure in segment zero is EXIT()ed.

The compiler nav correctly scopes enumerated constant definitions that are declared within the record
scopes.

A bug has been fixed in the code that copied non-var string parameters into their local temporaries.
Thw compiler nav understands heto perform a non-local function return assignment.

The compiler nav also accepts an integer value as the third parameter of filleslearthouh it is
documented to taka dar value.

A bug has been fixed where constarjatize aray indexes would cause an assert to fail. It turned out
that some optimizations were not checking the range of offsets, and creadlithdfisets.

The compiler nev understands declaring and accessing arrays using multi dimension syntax.

A number of error messages concerning forward declared typesden impreed; they are now
earlier and less cryptic.

A bug has been fixed in the code generation of constant setg.afEheo longer all-bits-zero, but
instead contain the correct value.

The compiler nav only range checks the CHR parameter if requested. The UCSE2 watnpiler did
not range check CHR.

The compiler nav checks parameter string lengths (declaredctual) for @erruns.
The compiler nv understands about file™ variables.
Theucsdpsyél) command is ne better at cleaning up its temporary files.

The boolean comparison operators (=, <>, <=, <, >=, w)maveadditional code to cope with one side
or the other being a constant.

A bug has been fixed in the way constant folding was handled around the FOR statimiet’

Reference Manual ucsd-psystem-xc 9

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

Version 0.2 (2010-Apr-19)
» The target for this release was to be able to compile the UCSI2 RPaical compiler from source. This
has been achied. It has yet to be determined if the compiler thus created actually functions.

 For differences between this cross compiler and the UCSDenatimpiler, see theucsdpsys_compil&)
man page. The most notable difference is that SIZEOF ésvackd, requiring the UCSD nat
compilers FROCEDURE SIZEOF to be renamed.

* Numerous bugs va keen fixed, usually in unexplored corner cases.

e The compiler nav understands the ABS, BLOCKREAD, BLOCKWRITE, CLOSE, CONCEXIT,
HALT, IDSEARCH, IORESUL, KEYBOARD, LENGTH, MARK, MOD, MOVELEFT,
MOVERIGHT, OPENNEW OPENOLD, PWROFTEN, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SCAN, TREESEARCH, TRUNC, UNITREAD, UNITWRITE and WRITELN
built-in symbols.

e The STRING type has been turned into a built-in named type. This permits the unwise user to redefine
STRING to be a variable or a procedure or a function, or (for maximum confusion) a different type. This
is what shadw warnings are for.

e The compiler nav understands the CASE, FOR, REPBMNTIL and WITH statements.
e The compiler nav understands comparisons of CHAR values.

» The compiler nav accepts pointers as parameters to the ORD function. This seems oddly inconsistent, in
a language as intent as Pascal is, with the protection of the programmer from his own folly.

» The compiler nev understands set arithmetic and set comparisons.

« Itis now possible, using thacsdpsys_compile —-listingption, to obtain a compiler listing. The listing
contains the source code intexea@with the disassembled p-code. TH$L) control comment is
ignored.

e The compiler nav understands = and <> comparisons of multi-word values (arrays and records).

» The compiler can e be mnfigured to hae longer identifier (hame) lengths. It defaults to 8 for
compatibility and it still drops underscores.

» The compiler nev understands comparisons of packed arrays of char.

Version 0.1 (2010-Apr-01)
First public release.

» The following built-in functions are understood: CHR, MEWML, ODD, ORD, PRED, SIZEOFSQR,
SUCC, TIME.

 All of the usual Pascal expresion operators are understood, althougtvayat atross the full range of
parameter types.

» The cross compiler can produce both little-endian codefiles and big-endian codefiles.

» A number of features from modern Pascal implementations are avilakleorstants, binary constants,
short-circuit booleanwluation, the address-of (@) operator,

» Most of the Pascal statement types aail@ble, including: BEGIN END, CASE (and OTHERWISE),
FOR, GOO (local), IF THEN (ELSE), NEW (including variant types), REFRBANTIL, WHILE,
WITH, WRITE, WRITELN. It is not yet possble to use non-local T&D

» Segment procedures can be created, and UNIT interfaces can be accessed from libilas; dbiderfiot
yet possible to compile UNITs. While F®NMARD procedures and functions are understood,
EXTERNAL procedures and functions are not yet supported.

 All of the UCSD Pascal data types are supported: ARRAcluding ACKED ARRAY), BOOLEAN,
CHAR, enumerated, FILE, INTEGER INTERACTIVE, pointers, REAL, RECORD (includ&gKED
RECORD), SETSTRING (including STRING[n]), subrange, TEXTThe long integer types are not yet
supported.

Reference Manual ucsd-psystem-xc 10

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

e The cross compiler understands mahthe UCSD Pascal constants, including: FALSE, MAX]INITL,
TRUE,

» The cross compiler is able to optimize most statements and expressions better than the Apple Pascal
native wmpiler Constant expressions are folded at compile time.

» There is aicsdpsys_dependd command, that can be used by your build system to scéi$for
filename*) include directies.

Version 0.0 (2006-May-22)
No public release.

Reference Manual ucsd-psystem-xc 11

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

NAME
How to build ucsd-psystem-xc

BEFORE YOU START
There are a f& pieces of software you may want to fetch and install before you proceed with your
installation of ucsd-psystem-xc.

Boost Library
You will need the C++ Boost Libranff you are using a package based system, you will need the
libboost-devepackage, or one named something very similar.
http://boost.org/

libexplain
Theucsd-psystem-xgackage depends on the libexplain package: a library of system-call-specific
strerror replacements.
http://libexplain.sourceforge.net/

GNU Groff
The documentation for thecsd-psystem-xgackage was prepared using the GNU 3ratkage
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Gfdfas been installed.

SITE CONFIGURATION
Theucsd-psystem-x@ackage is configured using tbenfigureprogram included in this distribution.

The configureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates thiakefileandlib/config.hfiles. Italso creates a shell scriginfig.status
that you can run in the future to recreate the current configuration.

Normally, you justcdto the directory containingcsd-psystem-$&source code and then type
% ./configure
...lots of output...
%

Runningconfiguretakes a minute or tww Whileit is running, it prints some messages that tell what it is
doing. Ifyou dont want to see the messages, configureusing the quiet option; for example,

% ./configure ——quiet

%

To compile theucsd-psystem-xgackage in a different directory from the one containing the source code,
you must use a version ofakethat supports th& PATH variable, such a&NU make Change directory to

the directory where you want the object files aretatables to go and run tieenfigurescript. The
configurescript automatically checks for the source code in the directorgahéigureis in and in.. (the
parent directory). If for some reasoanfigureis not in the source code directory that you are configuring,
then it will report that it canfind the source code. In that case, configurewith the option
——srcdir=DIR, whereDIR is the directory that contains the source code.

By default,configurewill arrange for thanale installcommand to install thecsd-psystem-xgackage’s
files in/usr/local/bin and/usr/local/man There are options which alloyou to control the placement of
these files.

——prefix= PATH
This specifies the path prefix to be used in the installation. Defaulisttocalunless otherwise
specified.
——exec—prefix= PATH
You can specify separate installation prefixes for architecture-specificifées Dehults to
${prefix} unless otherwise specified.
—-bindir=" PATH
This directory containsxecutable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.

Reference Manual ucsd-psystem-xc 12

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

Defaults to${exec_prefix}/birunless otherwise specified.

—-—mandir= PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-obbfaults to3{prefix}/manunless otherwise
specified.

The configurescript ignores most other arguments that yae @j use the-—help option for a complete
list.

On systems that require unusual options for compilation or linking thatttepsystem-xgackage'’s
configurescript does not knw about, you can ge configureinitial values for variables by setting them in
the ewvironment. InBourne-compatible shells, you can do that on the command lmtik

$ CXX="g++ —traditional’ LIBS=-Iposix ./configure

...lots of output...

$
Here are thenakevariables that you might want toverride with environment variables when running
configure

Variable: CXX
C++ compiler program. The defaultds+.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults tolémgymmon
to useCPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to installds. Thedefault isinstall if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form-| foo—I bar. Theconfigurescript will append to this, rather
than replace it. Itis common to uslBS=-L/usr/local/lib to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so theriHee
included in the next release.

BUILDING UCSD-PSYSTEM-XC
All you should need to do is use the
% make
...lots of output...
%
command and ®&it. Whenthis finishes you should see a directory cablédcontaining seeral programs.

If you hare GNU Groff installed, the build will also createstc/reference.pfle. Thiscontains the
README file, this BUILDING file, and all of the man pages.

You can remee the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%
command. @ remove dl of the abwe files, and also renve the Makefileandlib/config.handconfig.status
files, use the
% make distclean
...lots of output...
%
command.

The file etc/configuein is used to createonfigureby a GNU program calledutoconf You only need to
know this if you want to regenerat®nfigureusing a newer version afutoconf

Reference Manual ucsd-psystem-xc 13

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

TESTING UCSD-PSYSTEM-XC
Theucsd-psystem-xgackage comes with a test suiti@ run this test suite, use the command
% make sure
...lots of output...
Passed All Tests
%

The tests ta&a ew ®conds each, with aievery fast, and a couple very globut it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

INSTALLING UCSD-PSYSTEM-XC
As explained in th&ITE CONFIGURATIONection, abee, the ucsd-psystem-xgackage is installed
under thdusr/localtree by dedult. Usethe——prefix= PATH option toconfigureif you want some other
path. Morespecific installation locations are assignable, use-tinelp option toconfigurefor details.

All that is required to install thecsd-psystem-xgackage is to use the

% make install

...lots of output...

%
command. Contrabf the directories used may be found in the firgt fimes of theMakefilefile and the
other files written by theonfigurescript; it is best to reconfigure using tbenfigurescript, rather than
attempting to do this by hand.

GETTING HELP
If you need assistance with thesd-psystem-xgackage, please do not hesitate to contact the author at
Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version numbar lgy the
% ucsdpsys_compile -V
ucsdpsys_compile version 0.13.D001
...warranty disclaimer...
%
command. Pleas#o not send this example; run the program for the exact version number.
COPYRIGHT

ucsd-psystem-xeersion 0.13
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsd-psystem-xgackage is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

It should be in th&ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 14

Internals(1) Internals(1)

NAME
Factory factory factories — Abandon all floof control Ye who enter here

ABSTRACT
In mary cases, allegedly OO code is still highly procedural and imperyatith little advantage taken of
the possibilities presented by inheritance and virtual methods. This talk is abgatidglfow of control
to an unknown future, manufacturing objects that in turn manufacture more objects, of various class
relationships. Whis this useful? Hw do you follow the program logic, especially if the classegehd
even been written yet? Hg come the combinatorial explosion doggnake it untestable? Comalong
and tale a tip down the factory**n rabbit hole, a warrerveel layers deep, inside a compiler.

INTRODUCTION
There is a particular technique used in the ucsd-psystem-xc project to construct and manipulate Abstract
Syntax Tree (AST) representations of the Pascal program. Rather than having the tree operations be
implemented by procedural code external to the tree, the manipulations are performed by the tree nodes
themselves.

A design goal was to be able to re-use the grammar for the Pascal language, so that other static analysis
tools could also be written, but having the grammar and symbol table handling remain in common library
code. Thiscomplicates things, if we are going tovkahe tree nodes performing all the work, because this
would seem to imply thatvery tree node would include the methods necessary to perform all tasks and re-
uses of the grammaHappily, this is not the case.

This paper is an extension of the eari@mpiless and Factoriegaper.

THE VIRTUAL KEYWORD
The ley mncept here is thertual keyword in C++. A virtual method is one that canveadfferent
implementations in different deed dasses. Thudpr our AST node to perform a different operation, it
must be a different deséd dass.

Some Revision
Long, long ago, there was no C++. Examples of AST representations dating from then wouldveften ha
declarations lik this:
struct expr_t

{
int kind;
union
{
int value;
struct
{
struct expr_t *lhs;
struct expr_t *rhs;
}ps
}us
2
Manipulating these trees wouldvislve a function such as this:
int
expr_evaluate(const struct expr_t *ep)
{

switch (ep—>kind)

case CONSTANT:
return ep—>u.value;

case PLUS:

return expr_evaluate(ep—>u.p.lhs)
+ expr_evaluate(ep—>u.p.rhs);

Reference Manual ucsd-psystem-xc 15

Internals(1) Internals(1)

case MINUS:
return expr_evaluate(ep—>u.p.lhs)
— expr_evaluate(ep—>u.p.rhs);

etc
}
}
Each time you wanted to add annkind of expression node, you had to visit each of these functions, and

add another switch case. This can become an exgemagintenance problem, and also lead to version
control bottlenecks for the ddopment team.

In order to be able to add code in the future, but nee leese problems, it is necessary to split the problem
into pieces, using pointers to functions:
expr_evaluate(const struct expr_t *ep)

{
}

This means our struct declaration changed as well
struct expr_t

return (*ep—>evaluate_method)(ep);

{
int (*evaluate_method)(const struct expr_t *ep);
union
{
int value;
struct
{
struct expr_t *lhs;
struct expr_t *rhs;
}ps
}u;
h

Notice, in particularthat thekind member is ne gone, replaced by one or more function pointers. In
practice, this tends to be a pointer to a struct full of function pointers, one for each task, because this
simplifies the creating of meAST nodes.

All of which means that our actualauation comes in separate pieces:

int
expr_constant_evaluate(const struct expr_t *ep)
{

return ep—>u.value;
}
int
expr_plus_evaluate(const struct expr_t *ep)
{

return expr_evaluate(ep—>u.p.lhs)

+ expr_evaluate(ep—>u.p.rhs);

}

The actual implementation wouldveathese in separate compilation units. viNibiat we hae $lit this up,
it would also be possible to davay with the union, andnalloc AST nodes of the appropriate size.

If anyone has done this manualipu will know that there is a lot of machinery that needs to be kept in
sync. Muchof this machinery is done for you by C++, and it also adds some rigor to the types of nodes,
avading the numerous type casts required when doing the same thing marntellg++ could would

look something lik this:

Reference Manual ucsd-psystem-xc 16

Internals(1) Internals(1)

class expression

{
public:

virtual int evaluate(void) const = 0;
2

and the implementations
class expression_plus:
public expression

{
public:
int
evaluate(void)
const
{
return lhs—>evaluate() + rhs—>evaluate();
}
private:
expression *lhs;
expression *rhs;
%

The ley thing to notice is that we replaced #tiad member with a “vtable”, and switches kind with
virtual methods.

Flow Of Control
Once all of the machinery is in place, adding & kimd of expression AST node simply means deriving a
new class, and implementing the appropriate methods, suetakgtein the aboe example. Ifyou are a
new devdoper on the team, and you ditleée the machinery unfold, and implemented the firgtdasses,
just haw the code actuallyeachesyour virtual method can be a bit of a mystery.

The first thing to remember is whatiatual method is. It is a type-based dispatch mechanism. There
mary only be a single call to that method in the entire program, and yet there could be tens or hundreds of
implementations of that method. There is no voodoo here, no magic. If it were done long-hand, as in the
first example, confusion rarely arises. Just think of it as the same thing, only distributed differently
amongst the source files.

The second thing to remember is that you oftent care how the code is called, because that mechanism
has already been detiged. Whetflow of control does get to you, all you care about is getting your bit
right.

Testability
Is using a virtual method inherently morefidi@illt to test than the original C implementation? ybeth
have the same code, doing the same jobs, the code is merely distributed amongst the source files differently.
S0, no, the testing burden is unchanged. Do not neidiekC++ verbosity for “more stifo test”, and
remember that C++ igeryverbose.

Quite possiblythe separation of functionality by class means that you candneater confidence that you
will not unintentionally break something else in the file, because you argemodditing the same files.

The Source Code

This concept may be found the thesd-psystem-xsource code in thigo/expression.h file, and its
derived dasses may be found in thie/expression/ derived.h and

t ool /expression/ deri ved.h files (the directory hierarghmirrors the class hierargh Theparser
can be found in thib/pascal/grammar.y file.

THE FACTORY CONCEPT
A factory in this sense is a function that returns mestances of a class. Think of a parser that reads text,
parses it into expressions, and returns a pointer to the abstract syntax tree representing the parsed

Reference Manual ucsd-psystem-xc 17

Internals(1) Internals(1)

expression. Thigs an example of a factory.
Imagine that our (vastly simplified) yacc grammar looked fiks:

expr
: NUMBER
{
$$ = constant_expr_factory($1);
}
| | DENTIFIER
{
$$ = name_expr_factory($1);
}
| e xpr '+ expr
{
$$ = plus_expr_factory($1, $3);
}
| e xpr’'="expr
{
$$ = minus_expr_factory($1, $3);
}
For each kind of expression, wevea fctory that can build them for us. Whare not especially
complicated:
expr *
constant_expression_factory(int value)
{
return new expr_constant(value);
}

But why wouldn't we just put the same code into the grammar production {rules}? Because we wanted to
re-use the grammar.

VIRTUAL F ACTORIES
The grammar can be re-used by more than one translation task if we add a context object, and some virtual

methods:
expr

: NUMBER
{ $$ = ctx—>constant_expr_factory($1);

| | D}ENTIFIER
{ $$ = ctx—>name_expr_factory($1);

| e x;}:;r '+ expr
{ $$ = ctx—>plus_expr_factory($1, $3);

| e x;}:;r =’ expr
: $$ = ctx—>minus_expr_factory($1, $3);

And thectx variable is a pointer to
class translator

Reference Manual ucsd-psystem-xc 18

Internals(1) Internals(1)

{

public:
virtual expr *constant_expr_factory(int) = 0;
virtual expr *name_expr_factory(int) = 0;
virtual expr *plus_expr_factory(expr *, expr *) = 0;
virtual expr *minus_expr_factory(expr *, expr *) = 0;
etc

%

By deriving differentranslator classes, we can v me translator that implements a compitere
that implements a pretty prinf@ne that calculates cyclomatic complexity statistits,

The compiler translator creates expression tree nodes the&rhsnplementation that compiles the
expressions. Theretty printer translator creates different expression tree nodes ¥adnha
implementation that prints the expressions out. And other static analysis tools wattelnawn
implementations.

Testability
Does this mad programs that use this technique harder to test? The amount of code to be written is the
same, and does the same jobs. So, no, the testing burden is unchanged.

However, you hare the advantage that the parser is common to all of the tools, and so bug fixes to the parser
are inherited by all tools. Change once, testyavhere? Notuite: if you hach separate yacc files, all

with the same bug, you wouldveaio maken identical changes, and re-tedbols. Testing burden

unchangedbhut the probability of unintentionally dérging grammars becomes zero.

Flow Of Control
The need to understand thewlof control comes when the ddoper is testing a mederivation of the
translator class. Thgrammayand its connection to the translator context has already been written
and tested, all you need to do is test the newlywetdass. Yur test cases, then, museeise each of
the nev factory methods, one test for each of the expression productions,waraf fontrol will then enter
each of the factory methods.

The Source Code
This concept may be found the thesd-psystem-xsource code in thigh/translator.h file, and its
derived dasses may be found in theol /translator/ derived.h files.

FACTORY FACTORIES
The wheels of this context concept would appear to start to cdwdeh we consider assignment
expressions. Agrammar for a C-lik language could look likthis:

expr
- | DENTIFIER
{ $$ = ctx—>name_expr_factory($1);
| e x;}:;r =" expr
{ $$ = ctx—>assignment_expr_factory($1, $3);
| e x;}:;r '+ expr
i $$ = ctx—>plus_expr_factory($1, $3);

How does our name expression factory Wnehich side of the assignment it is on? At code generation

time, should it emit a load opcode or a store opcodie?bn’t know... yet. What we do knw is that loads
are much more likely than stores, so we initially generate expression trees that would perform loads.

But this just pushes the problem into #ssignment_expr_factory method. Inorder to figure out

Reference Manual ucsd-psystem-xc 19

Internals(1) Internals(1)

what kinds of assignment opcode to use, it would be necessary to figure out what kind of load opcode is
present, and generate the corresponding store
expression *
translator_compiler::assignment_expr_factory(expression *el, expression *e2)
{
const expr_load *testl =
dynamic_cast<const expr_load *>(el);
if (testl)
return new expr_store(el->get_operand(), e2);

const expr_array_load *test2 =
dynamic_cast<const expr_array_load *>(el);
if (test2)
return new expr_store_array(el->get_Ihs(), el->get_rhs(), e2);

yyerror("inappropriate assignment");
return new expression_error();

}

This makes me cringe. Those down-castehay alarm bells going df And all those getters so that AST
node prvates can be groped, ugh! But what altevets there? © answer that, les backtrack for a
moment. Ouwery first example can be re-written dikhis:

int

expr_evaluate(const struct expr_t *ep)

{

if (ep—>kind == CONSTANT)
return ep—>u.value;

if (ep—>kind == PLUS)
return expr_evaluate(ep—>u.p.lhs)
+ expr_evaluate(ep—>u.p.rhs);

if (ep—>kind == MINUS)
return expr_evaluate(ep—>u.p.lhs)
— expr_evaluate(ep—>u.p.rhs);

etc
}

The chain off statements iassignment_expr_factory is aswi t ch in disguise a type-based
dispatch in disguiseWe should be using a virtual method instead.

But in which class should we place the virtual method? Clgaarn't inside thdranslator class,
since we tried it there already¥he type-based dispatch is based on the expression type, and that is where
the virtual method Vies, in theexpression class:

expr: expr '=' expr

{
}

No, no, no, that cahbe iight: thectx object doesn’get ary chance to intersne. Excepthat it does:
when it created the left hand side in the first place.

By creating, saya compiler specific “load” AST node, it also created the assignment factopyatiehe
same object. There is no way a pretty printer assignment objectaitbe aeated by a compiler load
object (unless you deliberately code it that way).

$$ = $1->assignment_expr_factory($3);

Note, too, that the error-prone down-castsganee as is he need to grope anyosetivates. Andthe code

Reference Manual ucsd-psystem-xc 20

Internals(1) Internals(1)

is fastertoo, by eliminating the si@ down-casts and multiple tests.

The sharp-eyed reader will\verpticed that we ha amitted the error case. What happens when it goes
wrong? Theeasiest way is to kra the common base classays emit an error complaining about an
inappropriate assignment, unlesgmidden.

expression *

expression::assignment_expr_factory(expression *, expression *)
yyerror("inappropriate assignment");
return new expression_error();

}

In summaryour name_expr_factory method manufactured an object that, in turn, contains an
assignment_expr_factory method, used to manufacture more AST nod#s.row havea factory
factory.

Testability
My head is starting toxplode. Surelynowthere are combinatorial effects on testing!

WEell, yes and no.Yes, programming languages by definition are capable of combinatorial effects when it
comes to all the ways you can put together different expressions to build different programs; that is
unchanged, compilers nekbuds of testing.

And, no, the factory factories do not making the testing buraesey Theg are, after all, implementing the
same thing, often with the same code, albeit distributed differently amongst the classes.

Flow Of Control
If 'm a developer adding a ne type of assignment to an existing complier implemented this eayto |
know when eecution will reach my shiypnew expression classissignment_expr_factory
method? WlI, the same way you wouldewhen it was imperate cde: write a test with that kind of
assigment in it, and hand it to the pardeemember: you arentesting the parser part of the code, only
your nav assignment type (class).

The Source Code
This concept may be found the thesd-psystem-xsource code in thig/expression.h file, and its
tool-specific dewed dasses may be found in theol /expression/ deri ved.h files.

FACTORY FACTORY FACTORIES
Now we turn our attention to theame_expr_factory method. It5 been trying to look all innocent
and inconspicuous.
expression *
translator_compiler::name_expr_factory(const char *name)
{
symbol *sp = lookup(name);
if (Isp)
{
yyerror("name unknown");
return new expr_error();

}

const symbol_extern *testl =
dynamic_cast<const symbol_extern *>(sp);
if (testl)
return new expr_load_extern(sp);

const symbol_static *test2 =
dynamic_cast<const symbol_static *>(sp);
if (test2)
return new expr_load_static(sp);

Reference Manual ucsd-psystem-xc 21

Internals(1) Internals(1)

const symbol_local *test3 =
dynamic_cast<const symbol_local *>(sp);
if (test3)
return new expr_load_local(sp);

yyerror("can’t use nhame here");

This is another example of a type-based dispatch in disguise. But where does the virtual method belong?
Clearly, not in thetranslator class or deviative, we dready tried that. Instead, we implement it in the
symbol class, as follows:

expression *

translator::name_expr_factory(const char *name)

{
symbol *sp = lookup(name);
if (Isp)
{
yyerror("name unknown");
return new expr_error();
}
return sp—>name_expr_factory();
}

We noved thename_expr_factory into thetranslator base class, because it issnialentical
across all devied dasses, because it no longer needs toviamut compiler-specific classes.

As in the previous section about assignment expressions: doing symbol accesses this way means that the
advantages are the same, the testing burden unchanged, and the error handling is the same.

In summarythetranslator::name_expr_factory method looked up symbol object that, in
turn, contains aame_expr_factory method, used to manufactuggpression AST nodes, that in
turn containassignment_expr_factory methods, used to manufacture mexpr AST nodes.We
now havea factory factory factory.

The Source Code
This concept may be found the thesd-psystem-xsource code in thigd/symbol.h file, and its

derived dasses may be found in thie/symbol/ derived.h andt ool /symbol/ derived.h
files.

FACTORY**4

Have you thought about variable scopes as€al? Byhaving different scopes f@rogram s and
function s (because their variables are accessed by different opcodes) whewaxiable is declared,
you ask the currersicope to manufacture a nesymbol instance that... you get the idea.

The Source Code
This concept may be found the thesd-psystem-xsource code in thig/scope.h file, and its devied
classes may be found in thie/scope/ deri ved.h andt ool /scope/ deri ved.h files.

COPYRIGHT
ucsd-psystem-xeersion 0.13
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsd-psystem-xarogram comes with ABSOLUTBLNO WARRANTY; for details see the LICENSE
file in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

Reference Manual ucsd-psystem-xc 22

Internals(1)

AUTHOR
Peter Miller
/\/*

Reference Manual

E-Mail:
WWW:

pmiller@opensource.grau
http://miller.emu.id.au/pmiller/

ucsd-psystem-xc

Internals(1)

23

Internals(1) Internals(1)

Reference Manual ucsd-psystem-xc 1000

