
.

ucsd-psystem-xc
UCSD p-System Cross Compiler

Reference Manual

Peter Miller
<pmiller@opensource.org.au>

.

This document describes ucsd-psystem-xc version 0.13
and was prepared 12 November 2012.

This document describing the ucsd-psystem-xc package, and the ucsd-psystem-xc utility pro-
grams, are
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

0

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

The README file 1
Release Notes 3
How to build ucsd-psystem-xc 12

Internals Factory factory factories: Abandon all flow of control Ye who enter here. 15

Reference Manual ucsd-psystem-xc iii

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

Reference Manual ucsd-psystem-xc iv

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

NAME
ucsd-psystem-xc − UCSD p-System Pascal cross compiler

DESCRIPTION
Theucsd-psystem-xcpackage is a collection of tools for compiling Pascal source files to produce UCSD
p_System code files. Thepackage includes:

ucsdpsys(1)
A laucher to run the virtual machine comfortably from the command line. It includes a batch
mode for automating (scripting) operations.

ucsdpsys_assemble(1)
The cross assembler. It is able to assemble several different target microprocessor architectures
in the one executable.

ucsdpsys_compile(1)
The cross compiler. It understands the UCSD Pascal dialect, including UNIT definitions and
references.

ucsdpsys_depends(1)
May be used to determine include file dependencies, for use withmake(1) and other build tools.

ucsdpsys_disassemble(1)
For disassembling UCSD p-System code files. Thisis used to verify the correctness of the
compiler.

ucsdpsys_downcase(1)
A untility for converting Pascal code to lower case, leaving string constants and comments
unaltered.

ucsdpsys_errors(1)
A utility to translate back and forth between text and binary representations of the assembler error
message files.

ucsdpsys_libmap(1)
A utility for printing segment maps of UCSD p-System library files.

ucsdpsys_librarian(1)
A utility for manipulating the segments within UCSD p-System codefiles.

ucsdpsys_link(1)
A utility for linking UCSD p-System codefiles to their assembler components.

ucsdpsys_opcodes(1)
A utility to translate back and forth between text and binary representations of the assembler
opcode files.

ucsdpsys_setup(1)
A utility to translate back and forth between text and binary representations of the
system.miscinfo fi le.

Sister Projects
Some other projects will be of interest to you.

ucsd-psystem-fs
This package contains tools for manipulating UCSD p-System floppy disk images, and a file
system for mounting them in Linux as real file systems.
http://ucsd-psystem-fs.sourceforge.net/

ucsd-psystem-os
This project provides a self-hosting set of system sources.You need the disk images produced by
this project for the virtual machine to have a “system.pascal” file to run (this provides runtime
support and the user command executive). Thisis a work in progress.

Reference Manual ucsd-psystem-xc 1

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

uvsd-psystem-vm
This package provides a fully featured UCSD p-Machine emulator.

ARCHIVE SITE
The latest version ofucsd-psystem-xcis available on the Web from:

URL: http://ucsd-psystem-xc.sourceforge.net/
File: ucsd-psystem-xc-0.13.README # Description, from the tar file
File: ucsd-psystem-xc-0.13.lsm # Description, LSM format
File: ucsd-psystem-xc-0.13.tar.gz #the complete source
File: ucsd-psystem-xc-0.13.pdf # Reference Manual

BUILDING ucsd-psystem-xc
Full instructions for buildingucsd-psystem-xcmay be found in theBUILDING fi le included in this
distribution.

COPYRIGHT
ucsd-psystem-xcversion 0.13
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in theLICENSEfi le included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 2

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

RELEASE NOTES
This section details the features and bug fixes of each of the releases.

Version 0.13 (2012-Nov-12)
• Theucsdpsys_charset(1) command now understands more font file formats, including Terak and PSF

Tools format.

• Theucsdpsys_charset(1) command has a new−negativeoption, that is used to calculate the inverted
“top half” of a font from the normal “bottom half”, as is common in Terak fonts.

• Theucsdpsys_charset(1) is now able manipulate the boot logo in Terak system.charset files.

• Theucsdpsys_osmakgen(1) command now takes advantage of recentucsdpsys_osmakgen(1) features.

• There is a newucsdpsys_foto(1) command, used to convert UCSD Pascal.foto fi les into.png fi les,
andvice versa.

Version 0.12 (2012-Nov-02)
• Theucsdpsys_osmakgen(1) command now understands how to process SYSTEM.CHARSET files.

• There is a newucsdpsys_osmakgen(1) option called−−arch−from−host , that may be used to
translate a host name (e.g.“Terak”) into an arch name (e.g. “pdp11”).

• Theucsdpsys_charset(1) command now understands a−−architecture=terak option, which
means to work on a SYSTEM.CHARSET file suitable for a Terak system, where the glyphs are 8x10 and
laid out differently in the binary file.

Version 0.11 (2012-Jul-28)
• Kai Henningsen <kai.extern@gmail.com> discovered that ’Makefile’ files generated by

ucsdpsys_osmakgen did not correctly support the ’distclean’ target. This has been corrected.

• Work is in progress to be able to cope with multiple p-machine versions.

• The compiler is now able to cope with variables declared in plain units.

• Theucsdpsys_osmakgen(1) command now understands how to generate the necessary debian/ files for
building a debian package from the ucsd p-system operating system sources.

• Thw ucsdpsys(1) file no longer creates the implied system disk image if one of the supplied disk images
is a functioning system disk.

• Theucsdpsys(1) command now better understands where ucsd-psystem-os installs its files, which it
needs in order to build the default system disk image.

Version 0.10 (2011-May-18)
• A bug which caused a segfault in theubsdpsys −−batchoption has been fixed.

• Theucsdpsys_osmakgen(1) command, used by the ucsd-psystem-os project to generate itsMakefile ,
now understands the presence of man pages, and installs them appropriately.

Version 0.9 (2011-Feb-02)

Reference Manual ucsd-psystem-xc 3

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The slides of the LCA 2011 talk "Factory Factory Factories" is now available in the web site.

• Theucsdpsys_osmakgen(1) command has been improved, with a view to Debian packaging of the OS.

• Theucsdpsys(1) command has a new−−no−systemoption, to suppress the construction of a system disk
image.

• There is a newucsdpsys_compile(1) option,−−library−path for adding directories to the library search
path.

• Theucsdpsys_compile(1) command now fully supports the(*$U filename *) control comment.

• Theucsdpsys_assemble(1) command now understands the.error .print .sbttl .title pseudo-
ops, mostly named for PDP-11 assmebler pseudo-ops of the same name.

• Theucsdpsys_charset(1) command has been moved to this project, out of the ucsd-psystem-fs project.

• Theucsdpsys_assemble(1) command now understands how to produce assembler listings, using the−L
option. Seeucsdpsys_assemble(1) for more information.

• Theucsdpsys_compile(1) command now issues warnings for unreachange statements. There is a new
(*$warning unreachable false *) control comment to disable the warning.

• The project download web page now includes a link to the LunchPad PPA, where pre-compiled Ubuntu
packages are available.

• Theucsdpsys_assemble(1) command now understands the.ref pseudo-op, and generates the
appropriate relocation information.

• Theucsdpsys_assemble(1) command now more closely emulates the UCSD native assembler, in the way
it forgets symbols created between one.proc and another. This stops historical source files from
complaining about multiply defined symbols all over the place.

• Theucsdpsys_assemble(1) command now requires that the architecture be explicitly stated, either with
the.arch pseudo-op, or the−−arch command line option, in all cases.

• Theucsdpsys_assemble(1) command now ignores all input after the.end directive.

• Theucsdpsys_assembler(1) command now understands.gt greater than,>= greater than or equal,.lt
less than,<= less than or equal,<> inequality, and= equality comparisons.

• Theucsdpsys_assemble(1) command, now understands, for 6502 opcodes, how to relocate segment
relative addresses for absolute addressing opcodes.

• Theucsdpsys_assemble(1) command now understands conditional assembly.if , .else and.endc
pseudo-op directives.

• Theucsdpsys_assembler(1) command now understands the.macro pseudo-op, for defining an
substituting macros into the code stream.

• A bug has been fixed in the code that checks codefiles for validity. It no longer rejects segment
dictionaries with zero-length UNITSEG segments. Theseare produced when a program USES a non-
intrinsic unit, but is not yet linked.

Version 0.8 (2010-Aug-28)

Reference Manual ucsd-psystem-xc 4

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• Theucsdpsys_assemble(1) cross assembler now understands the.func pseudo-op.

• The error message formatting has been changed to use a 4 character hanging indent for multi-line error
messages.

• A bug has been fixed in theucsdpsys_osmakgen(1) command, it now correctly understands how to
remove system segments from libraries with an assembler component.

• Theucsdpsys_osmakgen(1) command now understands how to link Pascal programs with their assembler
components.

• A bug has been fixed in theucsdpsys(1) command, it no longer fails if its temporary files are unlinked
twice.

• There is a newucsdpsys_compile(1) −−view−path option, symmetric with theucsdpsys_assemble(1) and
ucsdpsys_depends(1) commands’ options of the same name.

• Theucsdpsys_assemble(1) command now understands the.incude pseudo-op. Thisis also a new
corresponding−I command line option.

• A bug has been fixed in theucsdpsys_librarian(1) command, it now patches the segment number in the
procedure dictionary when it renumbers a segment.

• A bug has been fixed in theucsdpsys_disassemble(1) anducsdpsys_libmap(1) commands, they were
printing SEPPROC link information incorrectly.

• Theucsdpsys_osmakgen(1) command now generates an “install” target, so that the results of the build
can be installed into the system.

• Theucsdpsys_assemble(1) cross assembler now groks unary minus (−e) unary plus (+e) bit-wise and (e1
& e2), bit-wise or (e1 | e2), bit-wise not (˜e), bit-wise exclusive-or (e1 ˆ e2), and modulo (e1 % e2)
expressions.

• Theucsdpsys_compile(1) cross compiler can now cope with VAR clauses in the IMPLEMENTATION
section of a UNIT.

• Theucsdpsys_compile(1) cross compiler is now able to cope with units that export variables, noth
intrinsic and non-intrinsic.

• Theucsdpsys_compile(1) grammar now understands “var anything” parameters to external assembler
procedures and functions.

• Theucsdpsys_osmakgen(1) command now understands assembler source file include dependencies.

• Theucsdpsys_depends(1) command now understands how to process assembler source files, when
looking for include dependencies.

• Theucsdpsys_assemble(1) command now procuces minimally correct relocation data sectiosn for each
native code procedure. Theucsdpsys_disassemble(1) command now has a minimally correct
understanding of relocation data.

• There is a newucsdpsys_link(1) command, that may be used to link programs and libraries of separate
procedures and functions together, to produce executable output codefiles. Seeucsdpsys_link(1) for
more information.

• Theucsdpsys_libmap(1) anducsdpsys_disassemble(1) commands now include the EOFMARK link
information record, to be sure it contains the correct argument. Theucsdpsys_assemble(1) and
ucsdpsys_compile(1) commands now correctly generate EOFMARK link information records.

• Theucsdpsys_littoral(1) command now correctly translatesnil to NULL.

• Theucsdpsys_littoral(1) command now expandswith variables completely. This preserves the
semantics into the C++ code.

• There is now a build dependency on the libexplainproject (http://libexplain.sourceforge.net/).

• A bug has been fixed in theucsdpsys(1) command, it no longer overwrite its own temporary files. All of
theucsdpsys(1) options now hav elong versions as well. The UCSD p-System volumes that are created

Reference Manual ucsd-psystem-xc 5

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

on-the-fly are now created large enough to hold all of the data.

• Theucsdpsys_osmakgen(1) command is now able to figure out when it needs to make a copy of
system/globals.text based on include dependency information and the source file manifest.

• Thefor statement now understandsreal control variables. Notethat the native compiler does not
allow this.

• Theucsdpsys_assemble(1) cross assembler now understands the.def pseudo-op.

Version 0.7 (2010-Jun-21)
• There is a newucsdpsys_osmakgen(1) command, used to write theMakefile for the ucsd-psystem-os

project.

• Theucsdpsys_setup(1) command now accepts an−−arch option, in order to select the byte sex of the
SYSTEM.MISCINFOfi le it generates.

• There is a newucsdpsys_errors(1) command, to translating the assembler error files from text to binary.

• Theucsdpsys_opcode(1) command now understands the opcode file format used by the UCSD Adaptive
Assembler.

• A bug has been fixed in theucsdpsys_depends(1) command, it no longer writes to a file called “−” when
it should write to the standard output.

• Theucsdpsys_librarian(1) command has a new−−remove-system-segments option, used to
remove dummy segments from a(*$U−*) utility.

• Theucsdpsys_librarian(1) command is now able to renumber segments when they are transferred
bwtween codefiles.

• Theucsdpsys_compile(1) command has a new−−hostoption, that allows you to set the byte-sex based
on the name of the host. Which helps those of us who don’t necessarily remember what endian-ness all
of the hosts actually are.

• Theucsdpsys_assemble(1) command has a new−−architecture option, to permit the target architecture
to be set from the command line.

• Theucsdpsys_assemble(1) multi-target cross assembler now has the beginnings of support for PDP-11
assembler.

• The cross compiler is now able to recognize the ord/odd hack (used to gain access to bit-wise opcodes)
and turn such expression trees from logical operations into bit-wise operations.

• The disassembler no longer rejects valid machine code segments with very short procedures.

• Theucsdpsys_assemble(1) multi-target cross assembler now has beginnings of 6502 support, including
both the MosTech syntax and the Apple syntax.

• A bug has been fixed in the cross compiler, it now generates the correct opcode for the inline-math sqrt
function.

• The assembler now has a.radix pseudo-op, that may be used to change the default radix being used
by the assembler.

• A bug has been fixed in repeat/until statements, it was generating no code in some cases.

Version 0.6 (2010-May-30)

Reference Manual ucsd-psystem-xc 6

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The compiler now understands EXTERNAL function and procedure declarations, and produces
corresponding linker records.

• The compiler now has complete long integer support.

• The compiler now understands the built-in STR function.

• It is now possible to write long integer constants in the source code. They take the same forms as other
integer constants, except they are suffixed with the letter L. This is an idea transplanted from C, the
UCSD native compiler does not recognise such constants. It makes testing and debugging the long
integer constant folding much easier.

• The compiler now understandsunit definitions, using II.1 syntax and semantics. If II.0separate
unit definitions are seen, they result in a warning, and theseparate keyword is otherwise ignored.

• The compiler now understands a C-style ternary operator expression(e1 ? e2 : e3) . The UCSD
native compiler doesn’t hav ethis.

Version 0.5 (2010-May-17)
• There is a new(*$feature underscore-significant true*) contol comment, that may be

used for increased ISO 10206 conformance.

• A bug has been fixed in the RECORD code, it no longer places the selector variable in the variant part of
the record, and thus is no longer requesting memory from NEW that is one word short.

• There is a new(*$feature efj-nfj false*) control comment to turn off the use of the EFJ and
NFJ opcodes.

• There is a new(*$feature short-with false*) control comment, that can be used to turn off
WITH statement optimizations.

• The built-in UNITWRITE procedure now accepts string constants for the second parameter. The UCSD
native compiler did not allow this. Handyfor debugging the system I/O procedures.

• The compiler now optimizes IF stratements with GOTO clauses. Itnow goes directly to the label from
the condition, when possible, rather than using UJP in the individual clauses.

• The IF statement now generates better code for the case where THEN is empty but ELSE is not.

• The compiler now understands the ISO 10206 integer constants with an explicit radix. This was not
available in the UCSD native compiler, for obvious reasons.

• The is a newucsdpsys_setup(1) command, used to encode and decode theSYSTEM.MISCINFOfi le.

• There is a newucsdpsys_downcase(1) command, that may be used to convert identifiers in Pascal source
code from upper case to lower case.

• The compiler no longer has a problem with sets passed as parameters. The way sets are push onto the
stack has been further optimized.

• The compiler now understands how to optimize away MOVELEFT, MOVERIGHT and FILLCHAR with
a constant zero or negative length.

• A bug has been fixed in the IN operator, in the case where the set had a fixed size.

• A bug has been fixed in the constant folding of string comparisons, it was getting relational comparisons
(<, <=, >, >=) wrong, but equality comparisons (=, <>) right.

• A bug has been fixed in the indexing of byte arrays (pointers) with enum types. It no longer throws an
assert.

• The compiler now issues warnings for comments that are not ISO 7185 comforming.

• A bug has been fixed in the code generation of MOV opcodes, in the case where more than 127 words
had to be moved.

• The compiler now understandsarctan (ISO 10206) as a synonym foratan , but only if (*$feature
inline-math true*) is in effect.

Reference Manual ucsd-psystem-xc 7

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The compiler now generates correct code for NOT logical expressions assigned to a boolean variable, or
passed as a boolean parameter.

• A bug has been fixed in the code that folds constant MPI (integer multiply) expressions.

• A bug has been fixed in the optimization of integer subtraction.

• A bug has been fixed in the optimization of the ADI (add integer) expression.

• A bug has been fixed in the optimisation of the logical NOT expression.

• The cross compiler now understands the bit-wise integer AND, OR and NOT expressions.

• The compiler now generates LDB (load byte) and STB (store byte) instructions for packed arrays of 8-bit
things, not just packed array of char. This is the same behaviour as the UCSD native compiler.

• There is a newucsdpsys_librarian(1) −R option, that can be used to remove segments by name or by
number.

Version 0.4 (2010-May-06)
• A bug has been fixed in the code generation for large set constants.

• The CASE statement now understands negative case values.

• The compiler now understands how to cast string constants into packed-array-of-char constants, when
they are procedure and functions parameters.

• The compiler now understands when a case control expression is a function call with no parameters.

• The compiler now understands functions calls with no parameters on either side of the IN operator.

• The compiler now generates the correct code for segment procedures that are declared forward.

• The compiler now understands how to pass parameters that are records, by value.

• The compiler now generates correct code for array parameters when they are passed by value.

• A bug has been fixed in the READLN code generation, it no longer throws an assert.

• The compiler no longer issues syntax errors when semicolons appear in questionable places in RECORD
declarations.

• The way symbol conflicts and shadows are calaculated has been changed, it was getting false positive on
the conflict tests.

• The compiler now understands passing a string as the first parameter to the FILLCHAR procedure.

• The compiler now understands the unary plus operator.

• The compiler now understands the built-in GET, GOT OXY, PAGE, PUT, SEEK, UNITSTATUS and
UNITWAIT procedures.

• There is a new (*$feature inline-math true*) control comment. When this is enabled, the compiler now
understands the built-in ATAN, COS, EXP, LN, LOG, SIN and SQRT functions.

• There is a newucsdpsys_assemble(1) command, that may be used to assemble machine code and p-code.
It isn’t particularly capable, as yet, but it will become more so as work proceeds on the p-machine
validation

• The compiler now accepts for loops of char values where one or both limits are char constants.

• The built-in FILLCHAR procedure now accepts its third paramater being an enumerated type. This is for
backwards compatibility with the UCSD native compiler.

• The compiler now understands how to index an array by a char value. Previously it was throwing an
assert.

• There is a new (*$feature ignore-undefined-segment-zero true *) option, that can be used to turn off
checking for undefined forward declarations, when those symbols would be in segment zero. This
“feature” is used by system utilities. All other cases of forward functions being undefined result in a
fatal error; use EXTERNAL for procedures to be linked later.

Reference Manual ucsd-psystem-xc 8

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The disassembler can now cope with broken pointers in a segment’s procedure dictionary. Usually
undefined (external) procedures with have a zero (0) entry in the procedure table.

• The string parameters length check is now a warning, rather than an error. This is because the implicit
copy at run-time will throw a run-time error of the string doesn’t fit.

• The compiler now accepts calls to the built-in EOF and EOLN functions with no parameters.

• The code generation for empty set constant has been improved. It no longer throws an assert. The same
assert revealed that empty sets as a function parameter was not correctly being cast to the appropriate
type of set.

Version 0.3 (2010-Apr-25)
• A warning is now issued if a case statement contains anotherwise clause. You can disable the

warning by using the(*$warning otherwise false*) control comment.

• The compile listing now includes the symbol table for each procedure and function.

• A bug has been fixed in the code that derefereces pointers to strings. It no longer tries to laod the whole
string onto the stack. The compiler now understands how to deal with string-typed fields on the right
hand side of dot (expr.name) expressions.

• A bug has been fixed where function parameters that were the names of functions that had no parameters
were not being called.

The compiler no longer issues duplicate label warnings. In some
cases it was issuing warnings about unused labels twice.

• The compiler now understands the built-in COPY, DELETE, EOF, EOLN, FILLCHAR, INSERT, POS,
UNITBUSY and UNITCLEAR functions and procedures.

• The compiler no loger throws an assert if a procedure in segment zero is EXIT()ed.

• The compiler now correctly scopes enumerated constant definitions that are declared within the record
scopes.

• A bug has been fixed in the code that copied non-var string parameters into their local temporaries.

• Thw compiler now understands how to perform a non-local function return assignment.

• The compiler now also accepts an integer value as the third parameter of fillchar, even thouh it is
documented to take a char value.

• A bug has been fixed where constant negative array indexes would cause an assert to fail. It turned out
that some optimizations were not checking the range of offsets, and creating invalid offsets.

• The compiler now understands declaring and accessing arrays using multi dimension syntax.

• A number of error messages concerning forward declared types have been improved; they are now
earlier, and less cryptic.

• A bug has been fixed in the code generation of constant sets. They are no longer all-bits-zero, but
instead contain the correct value.

• The compiler now only range checks the CHR parameter if requested. The UCSD native compiler did
not range check CHR.

• The compiler now checks parameter string lengths (declaredvsactual) for overruns.

• The compiler now understands about fileˆ variables.

• Theucsdpsys(1) command is now better at cleaning up its temporary files.

• The boolean comparison operators (=, <>, <=, <, >=, >) now hav eadditional code to cope with one side
or the other being a constant.

• A bug has been fixed in the way constant folding was handled around the FOR statement’s limits.

Reference Manual ucsd-psystem-xc 9

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

Version 0.2 (2010-Apr-19)
• The target for this release was to be able to compile the UCSD native Pascal compiler from source. This

has been achieved. It has yet to be determined if the compiler thus created actually functions.

• For differences between this cross compiler and the UCSD native compiler, see theucsdpsys_compile(1)
man page. The most notable difference is that SIZEOF is a keyword, requiring the UCSD native
compiler’s PROCEDURE SIZEOF to be renamed.

• Numerous bugs have been fixed, usually in unexplored corner cases.

• The compiler now understands the ABS, BLOCKREAD, BLOCKWRITE, CLOSE, CONCAT, EXIT,
HALT, IDSEARCH, IORESULT, KEYBOARD, LENGTH, MARK, MOD, MOVELEFT,
MOVERIGHT, OPENNEW, OPENOLD, PWROFTEN, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SCAN, TREESEARCH, TRUNC, UNITREAD, UNITWRITE and WRITELN
built-in symbols.

• The STRING type has been turned into a built-in named type. This permits the unwise user to redefine
STRING to be a variable or a procedure or a function, or (for maximum confusion) a different type. This
is what shadow warnings are for.

• The compiler now understands the CASE, FOR, REPEAT UNTIL and WITH statements.

• The compiler now understands comparisons of CHAR values.

• The compiler now accepts pointers as parameters to the ORD function. This seems oddly inconsistent, in
a language as intent as Pascal is, with the protection of the programmer from his own folly.

• The compiler now understands set arithmetic and set comparisons.

• It is now possible, using theucsdpsys_compile −−listingoption, to obtain a compiler listing. The listing
contains the source code interleaved with the disassembled p-code. The(*$L) control comment is
ignored.

• The compiler now understands = and <> comparisons of multi-word values (arrays and records).

• The compiler can now be configured to have longer identifier (name) lengths. It defaults to 8 for
compatibility, and it still drops underscores.

• The compiler now understands comparisons of packed arrays of char.

Version 0.1 (2010-Apr-01)
First public release.

• The following built-in functions are understood: CHR, MEMAVAIL, ODD, ORD, PRED, SIZEOF, SQR,
SUCC, TIME.

• All of the usual Pascal expresion operators are understood, although not always across the full range of
parameter types.

• The cross compiler can produce both little-endian codefiles and big-endian codefiles.

• A number of features from modern Pascal implementations are avilable: hex constants, binary constants,
short-circuit boolean evaluation, the address-of (@) operator,

• Most of the Pascal statement types are available, including: BEGIN END, CASE (and OTHERWISE),
FOR, GOTO (local), IF THEN (ELSE), NEW (including variant types), REPEAT UNTIL, WHILE,
WITH, WRITE, WRITELN. It is not yet possble to use non-local GOTO.

• Segment procedures can be created, and UNIT interfaces can be accessed from library codefiles. It is not
yet possible to compile UNITs. While FORWARD procedures and functions are understood,
EXTERNAL procedures and functions are not yet supported.

• All of the UCSD Pascal data types are supported: ARRAY (including PACKED ARRAY), BOOLEAN,
CHAR, enumerated, FILE, INTEGER INTERACTIVE, pointers, REAL, RECORD (including PACKED
RECORD), SET, STRING (including STRING[n]), subrange, TEXT. The long integer types are not yet
supported.

Reference Manual ucsd-psystem-xc 10

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The cross compiler understands many of the UCSD Pascal constants, including: FALSE, MAXINT, NIL,
TRUE,

• The cross compiler is able to optimize most statements and expressions better than the Apple Pascal
native compiler. Constant expressions are folded at compile time.

• There is aucsdpsys_depends(1) command, that can be used by your build system to scan for(*$I
filename*) include directives.

Version 0.0 (2006-May-22)
No public release.

Reference Manual ucsd-psystem-xc 11

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

NAME
How to build ucsd-psystem-xc

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your
installation of ucsd-psystem-xc.

Boost Library
You will need the C++ Boost Library. If you are using a package based system, you will need the
libboost-develpackage, or one named something very similar.
http://boost.org/

libexplain
Theucsd-psystem-xcpackage depends on the libexplain package: a library of system-call-specific
strerror replacements.
http://libexplain.sourceforge.net/

GNU Groff
The documentation for theucsd-psystem-xcpackage was prepared using the GNU Groff package
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time − if GNU Groff has been installed.

SITE CONFIGURATION
Theucsd-psystem-xcpackage is configured using theconfigureprogram included in this distribution.

Theconfigureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates theMakefileandlib/config.hfi les. Italso creates a shell scriptconfig.status
that you can run in the future to recreate the current configuration.

Normally, you justcd to the directory containingucsd-psystem-xc’s source code and then type
% ./configure
...lots of output...
%

Runningconfiguretakes a minute or two. Whileit is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, runconfigureusing the quiet option; for example,

% ./configure −−quiet
%

To compile theucsd-psystem-xcpackage in a different directory from the one containing the source code,
you must use a version ofmakethat supports theVPATH variable, such asGNU make. Change directory to
the directory where you want the object files and executables to go and run theconfigurescript. The
configurescript automatically checks for the source code in the directory thatconfigureis in and in.. (the
parent directory). If for some reasonconfigureis not in the source code directory that you are configuring,
then it will report that it can’t find the source code. In that case, runconfigurewith the option
−−srcdir= DIR, whereDIR is the directory that contains the source code.

By default,configurewill arrange for themake installcommand to install theucsd-psystem-xcpackage’s
fi les in/usr/local/bin, and /usr/local/man. There are options which allow you to control the placement of
these files.

−−prefix= PA TH
This specifies the path prefix to be used in the installation. Defaults to/usr/localunless otherwise
specified.

−−exec−prefix= PA TH
You can specify separate installation prefixes for architecture-specific files files. Defaults to
${prefix} unless otherwise specified.

−−bindir= PA TH
This directory contains executable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.

Reference Manual ucsd-psystem-xc 12

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

Defaults to${exec_prefix}/binunless otherwise specified.

−−mandir= PA TH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to${prefix}/manunless otherwise
specified.

Theconfigurescript ignores most other arguments that you give it; use the−−help option for a complete
list.

On systems that require unusual options for compilation or linking that theucsd-psystem-xcpackage’s
configurescript does not know about, you can giveconfigureinitial values for variables by setting them in
the environment. InBourne-compatible shells, you can do that on the command line like this:

$ CXX=’g++ −traditional’ LIBS=−lposix ./configure
...lots of output...
$

Here are themakevariables that you might want to override with environment variables when running
configure.

Variable: CXX
C++ compiler program. The default isc++ .

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults to empty. It is common
to useCPPFLAGS=−I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to install files. Thedefault isinstall if you have it, cpotherwise.

Variable: LIBS
Libraries to link with, in the form−l foo−l bar. Theconfigurescript will append to this, rather
than replace it. It is common to useLIBS=−L/usr/local/lib to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING UCSD-PSYSTEM-XC
All you should need to do is use the

% make
...lots of output...
%

command and wait. Whenthis finishes you should see a directory calledbin containing several programs.

If you have GNU Groff installed, the build will also create aetc/reference.psfi le. Thiscontains the
README file, this BUILDING file, and all of the man pages.

You can remove the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%

command. To remove all of the above files, and also remove theMakefileandlib/config.handconfig.status
fi les, use the

% make distclean
...lots of output...
%

command.

The fileetc/configure.in is used to createconfigureby a GNU program calledautoconf. You only need to
know this if you want to regenerateconfigureusing a newer version ofautoconf.

Reference Manual ucsd-psystem-xc 13

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

TESTING UCSD-PSYSTEM-XC
Theucsd-psystem-xcpackage comes with a test suite.To run this test suite, use the command

% make sure
...lots of output...
Passed All Tests
%

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests

should appear at the end of the make.

INSTALLING UCSD-PSYSTEM-XC
As explained in theSITE CONFIGURATIONsection, above, theucsd-psystem-xcpackage is installed
under the/usr/localtree by default. Usethe−−prefix= PA TH option toconfigureif you want some other
path. Morespecific installation locations are assignable, use the−−help option toconfigurefor details.

All that is required to install theucsd-psystem-xcpackage is to use the
% make install
...lots of output...
%

command. Controlof the directories used may be found in the first few lines of theMakefilefi le and the
other files written by theconfigurescript; it is best to reconfigure using theconfigurescript, rather than
attempting to do this by hand.

GETTING HELP
If you need assistance with theucsd-psystem-xcpackage, please do not hesitate to contact the author at

Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version number given by the
% ucsdpsys_compile −V
ucsdpsys_compile version 0.13.D001
...warranty disclaimer...
%

command. Pleasedo not send this example; run the program for the exact version number.

COPYRIGHT
ucsd-psystem-xcversion 0.13
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsd-psystem-xcpackage is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

It should be in theLICENSEfi le included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 14

Internals(1) Internals(1)

NAME
Factory factory factories − Abandon all flow of control Ye who enter here

ABSTRACT
In many cases, allegedly OO code is still highly procedural and imperative, with little advantage taken of
the possibilities presented by inheritance and virtual methods. This talk is about delegating flow of control
to an unknown future, manufacturing objects that in turn manufacture more objects, of various class
relationships. Why is this useful? How do you follow the program logic, especially if the classes haven’t
ev en been written yet? How come the combinatorial explosion doesn’t make it untestable? Comealong
and take a trip down the factory**n rabbit hole, a warren several layers deep, inside a compiler.

INTRODUCTION
There is a particular technique used in the ucsd-psystem-xc project to construct and manipulate Abstract
Syntax Tree (AST) representations of the Pascal program. Rather than having the tree operations be
implemented by procedural code external to the tree, the manipulations are performed by the tree nodes
themselves.

A design goal was to be able to re-use the grammar for the Pascal language, so that other static analysis
tools could also be written, but having the grammar and symbol table handling remain in common library
code. Thiscomplicates things, if we are going to have the tree nodes performing all the work, because this
would seem to imply that every tree node would include the methods necessary to perform all tasks and re-
uses of the grammar. Happily, this is not the case.

This paper is an extension of the earlierCompilers and Factoriespaper.

THE VIRTUAL KEYWORD
The key concept here is thevirtual keyword in C++. A virtual method is one that can have different
implementations in different derived classes. Thus,for our AST node to perform a different operation, it
must be a different derived class.

Some Revision
Long, long ago, there was no C++. Examples of AST representations dating from then would often have C
declarations like this:

struct expr_t
{

int kind;
union
{

int value;
struct
{

struct expr_t *lhs;
struct expr_t *rhs;

} p ;
} u ;

};
Manipulating these trees would involve a function such as this:

int
expr_evaluate(const struct expr_t *ep)
{

switch (ep−>kind)
{
case CONSTANT:

return ep−>u.value;

case PLUS:
return expr_evaluate(ep−>u.p.lhs)

+ expr_evaluate(ep−>u.p.rhs);

Reference Manual ucsd-psystem-xc 15

Internals(1) Internals(1)

case MINUS:
return expr_evaluate(ep−>u.p.lhs)

− expr_evaluate(ep−>u.p.rhs);

etc
}

}
Each time you wanted to add a new kind of expression node, you had to visit each of these functions, and
add another switch case. This can become an expensive maintenance problem, and also lead to version
control bottlenecks for the development team.

In order to be able to add code in the future, but not have these problems, it is necessary to split the problem
into pieces, using pointers to functions:

expr_evaluate(const struct expr_t *ep)
{

return (*ep−>evaluate_method)(ep);
}

This means our struct declaration changed as well
struct expr_t
{

int (*evaluate_method)(const struct expr_t *ep);
union
{

int value;
struct
{

struct expr_t *lhs;
struct expr_t *rhs;

} p ;
} u ;

};

Notice, in particular, that thekind member is now gone, replaced by one or more function pointers. In
practice, this tends to be a pointer to a struct full of function pointers, one for each task, because this
simplifies the creating of new AST nodes.

All of which means that our actual evaluation comes in separate pieces:
int
expr_constant_evaluate(const struct expr_t *ep)
{

return ep−>u.value;
}

int
expr_plus_evaluate(const struct expr_t *ep)
{

return expr_evaluate(ep−>u.p.lhs)
+ expr_evaluate(ep−>u.p.rhs);

}

The actual implementation would have these in separate compilation units. Now that we have split this up,
it would also be possible to do away with the union, andmalloc AST nodes of the appropriate size.

If anyone has done this manually, you will know that there is a lot of machinery that needs to be kept in
sync. Muchof this machinery is done for you by C++, and it also adds some rigor to the types of nodes,
avoiding the numerous type casts required when doing the same thing manually. The C++ could would
look something like this:

Reference Manual ucsd-psystem-xc 16

Internals(1) Internals(1)

class expression
{
public:

virtual int evaluate(void) const = 0;
};

and the implementations
class expression_plus:

public expression
{
public:

int
evaluate(void)

const
{

return lhs−>evaluate() + rhs−>evaluate();
}

private:
expression *lhs;
expression *rhs;

};

The key thing to notice is that we replaced thekind member with a “vtable”, and switches onkind with
virtual methods.

Flow Of Control
Once all of the machinery is in place, adding a new kind of expression AST node simply means deriving a
new class, and implementing the appropriate methods, such asevaluatein the above example. Ifyou are a
new dev eloper on the team, and you didn’t see the machinery unfold, and implemented the first few classes,
just how the code actuallyreachesyour virtual method can be a bit of a mystery.

The first thing to remember is what avirtual method is. It is a type-based dispatch mechanism. There
many only be a single call to that method in the entire program, and yet there could be tens or hundreds of
implementations of that method. There is no voodoo here, no magic. If it were done long-hand, as in the
fi rst example, confusion rarely arises. Just think of it as the same thing, only distributed differently
amongst the source files.

The second thing to remember is that you oftendon’t carehow the code is called, because that mechanism
has already been debugged. Whenflow of control does get to you, all you care about is getting your bit
right.

Testability
Is using a virtual method inherently more difficult to test than the original C implementation? They both
have the same code, doing the same jobs, the code is merely distributed amongst the source files differently.
So, no, the testing burden is unchanged. Do not mistake the C++ verbosity for “more stuff to test”, and
remember that C++ isveryverbose.

Quite possibly, the separation of functionality by class means that you can have greater confidence that you
will not unintentionally break something else in the file, because you are not even editing the same files.

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/expression.h fi le, and its
derived classes may be found in thelib/expression/ derived.h and
tool/expression/ derived.h fi les (the directory hierarchy mirrors the class hierarchy). Theparser
can be found in thelib/pascal/grammar.y fi le.

THE FACTORY CONCEPT
A factory in this sense is a function that returns new instances of a class. Think of a parser that reads text,
parses it into expressions, and returns a pointer to the abstract syntax tree representing the parsed

Reference Manual ucsd-psystem-xc 17

Internals(1) Internals(1)

expression. Thisis an example of a factory.

Imagine that our (vastly simplified) yacc grammar looked like this:
expr

: N UMBER
{

$$ = constant_expr_factory($1);
}

| I DENTIFIER
{

$$ = name_expr_factory($1);
}

| e xpr ’+’ expr
{

$$ = plus_expr_factory($1, $3);
}

| e xpr ’−’ expr
{

$$ = minus_expr_factory($1, $3);
}

;

For each kind of expression, we have a factory that can build them for us. They are not especially
complicated:

expr *
constant_expression_factory(int value)
{

return new expr_constant(value);
}

But why wouldn’t we just put the same code into the grammar production {rules}? Because we wanted to
re-use the grammar.

VIRTUAL F ACTORIES
The grammar can be re-used by more than one translation task if we add a context object, and some virtual
methods:

expr
: N UMBER

{
$$ = ctx−>constant_expr_factory($1);

}
| I DENTIFIER

{
$$ = ctx−>name_expr_factory($1);

}
| e xpr ’+’ expr

{
$$ = ctx−>plus_expr_factory($1, $3);

}
| e xpr ’−’ expr

{
$$ = ctx−>minus_expr_factory($1, $3);

}
;

And thectx variable is a pointer to
class translator

Reference Manual ucsd-psystem-xc 18

Internals(1) Internals(1)

{
public:

virtual expr *constant_expr_factory(int) = 0;
virtual expr *name_expr_factory(int) = 0;
virtual expr *plus_expr_factory(expr *, expr *) = 0;
virtual expr *minus_expr_factory(expr *, expr *) = 0;
etc

};

By deriving differenttranslator classes, we can have one translator that implements a compiler, one
that implements a pretty printer, one that calculates cyclomatic complexity statistics,etc.

The compiler translator creates expression tree nodes that have an implementation that compiles the
expressions. Thepretty printer translator creates different expression tree nodes that have an
implementation that prints the expressions out. And other static analysis tools each have their own
implementations.

Testability
Does this make programs that use this technique harder to test? The amount of code to be written is the
same, and does the same jobs. So, no, the testing burden is unchanged.

However, you have the advantage that the parser is common to all of the tools, and so bug fixes to the parser
are inherited by all tools. Change once, test everywhere? Notquite: if you hadn separate yacc files, all
with the same bug, you would have to maken identical changes, and re-testn tools. Testing burden
unchanged,but the probability of unintentionally diverging grammars becomes zero.

Flow Of Control
The need to understand the flow of control comes when the developer is testing a new derivation of the
translator class. Thegrammar, and its connection to the translator context has already been written
and tested, all you need to do is test the newly derived class. Your test cases, then, must exercise each of
the new factory methods, one test for each of the expression productions, and flow of control will then enter
each of the factory methods.

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/translator.h fi le, and its
derived classes may be found in thetool/translator/ derived.h fi les.

FA CTORY FACTORIES
The wheels of this context concept would appear to start to come off when we consider assignment
expressions. Agrammar for a C-like language could look like this:

expr
: I DENTIFIER

{
$$ = ctx−>name_expr_factory($1);

}
| e xpr ’=’ expr

{
$$ = ctx−>assignment_expr_factory($1, $3);

}
| e xpr ’+’ expr

{
$$ = ctx−>plus_expr_factory($1, $3);

}
;

How does our name expression factory know which side of the assignment it is on? At code generation
time, should it emit a load opcode or a store opcode?We don’t know... yet. What we do know is that loads
are much more likely than stores, so we initially generate expression trees that would perform loads.

But this just pushes the problem into theassignment_expr_factory method. Inorder to figure out

Reference Manual ucsd-psystem-xc 19

Internals(1) Internals(1)

what kinds of assignment opcode to use, it would be necessary to figure out what kind of load opcode is
present, and generate the corresponding store

expression *
translator_compiler::assignment_expr_factory(expression *e1, expression *e2)
{

const expr_load *test1 =
dynamic_cast<const expr_load *>(e1);

if (test1)
return new expr_store(e1−>get_operand(), e2);

const expr_array_load *test2 =
dynamic_cast<const expr_array_load *>(e1);

if (test2)
return new expr_store_array(e1−>get_lhs(), e1−>get_rhs(), e2);

yyerror("inappropriate assignment");
return new expression_error();

}

This makes me cringe. Those down-casts have my alarm bells going off. And all those getters so that AST
node privates can be groped, ugh! But what alternative is there? To answer that, let’s backtrack for a
moment. Ourvery first example can be re-written like this:

int
expr_evaluate(const struct expr_t *ep)
{

if (ep−>kind == CONSTANT)
return ep−>u.value;

if (ep−>kind == PLUS)
return expr_evaluate(ep−>u.p.lhs)

+ expr_evaluate(ep−>u.p.rhs);

if (ep−>kind == MINUS)
return expr_evaluate(ep−>u.p.lhs)

− expr_evaluate(ep−>u.p.rhs);

etc
}

The chain ofif statements inassignment_expr_factory is aswitch in disguise, a type-based
dispatch in disguise.We should be using a virtual method instead.

But in which class should we place the virtual method? Clearly, it isn’t inside thetranslator class,
since we tried it there already. The type-based dispatch is based on the expression type, and that is where
the virtual method lives, in theexpression class:

expr: expr ’=’ expr
{

$$ = $1−>assignment_expr_factory($3);
}

No, no, no, that can’t be right: thectx object doesn’t get any chance to intervene. Exceptthat it does:
when it created the left hand side in the first place.

By creating, say, a compiler specific “load” AST node, it also created the assignment factory; they are the
same object. There is no way a pretty printer assignment object will ever be created by a compiler load
object (unless you deliberately code it that way).

Note, too, that the error-prone down-casts aregone, as is the need to grope anyone’s privates. Andthe code

Reference Manual ucsd-psystem-xc 20

Internals(1) Internals(1)

is faster, too, by eliminating the slow down-casts and multiple tests.

The sharp-eyed reader will have noticed that we have omitted the error case. What happens when it goes
wrong? Theeasiest way is to have the common base class aways emit an error complaining about an
inappropriate assignment, unless overridden.

expression *
expression::assignment_expr_factory(expression *, expression *)
{

yyerror("inappropriate assignment");
return new expression_error();

}

In summary, our name_expr_factory method manufactured an object that, in turn, contains an
assignment_expr_factory method, used to manufacture more AST nodes.We now hav ea factory
factory.

Testability
My head is starting to explode. Surelynowthere are combinatorial effects on testing!

Well, yes and no.Yes, programming languages by definition are capable of combinatorial effects when it
comes to all the ways you can put together different expressions to build different programs; that is
unchanged, compilers needlotsof testing.

And, no, the factory factories do not making the testing burden worse. They are, after all, implementing the
same thing, often with the same code, albeit distributed differently amongst the classes.

Flow Of Control
If I’m a developer adding a new type of assignment to an existing complier implemented this way, how to I
know when execution will reach my shiny new expression class’assignment_expr_factory
method? Well, the same way you would have when it was imperative code: write a test with that kind of
assigment in it, and hand it to the parser. Remember: you aren’t testing the parser part of the code, only
your new assignment type (class).

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/expression.h fi le, and its
tool-specific derived classes may be found in thetool/expression/ derived.h fi les.

FA CTORY FACTORY FACTORIES
Now we turn our attention to thename_expr_factory method. It’s been trying to look all innocent
and inconspicuous.

expression *
translator_compiler::name_expr_factory(const char *name)
{

symbol *sp = lookup(name);
if (!sp)
{

yyerror("name unknown");
return new expr_error();

}

const symbol_extern *test1 =
dynamic_cast<const symbol_extern *>(sp);

if (test1)
return new expr_load_extern(sp);

const symbol_static *test2 =
dynamic_cast<const symbol_static *>(sp);

if (test2)
return new expr_load_static(sp);

Reference Manual ucsd-psystem-xc 21

Internals(1) Internals(1)

const symbol_local *test3 =
dynamic_cast<const symbol_local *>(sp);

if (test3)
return new expr_load_local(sp);

yyerror("can’t use name here");
}

This is another example of a type-based dispatch in disguise. But where does the virtual method belong?
Clearly, not in thetranslator class or derivative, we already tried that. Instead, we implement it in the
symbol class, as follows:

expression *
translator::name_expr_factory(const char *name)
{

symbol *sp = lookup(name);
if (!sp)
{

yyerror("name unknown");
return new expr_error();

}
return sp−>name_expr_factory();

}

We moved thename_expr_factory into thetranslator base class, because it is now identical
across all derived classes, because it no longer needs to know about compiler-specific classes.

As in the previous section about assignment expressions: doing symbol accesses this way means that the
advantages are the same, the testing burden unchanged, and the error handling is the same.

In summary, thetranslator::name_expr_factory method looked up asymbol object that, in
turn, contains aname_expr_factory method, used to manufactureexpression AST nodes, that in
turn containassignment_expr_factory methods, used to manufacture moreexpr AST nodes.We
now hav ea factory factory factory.

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/symbol.h fi le, and its
derived classes may be found in thelib/symbol/ derived.h andtool/symbol/ derived.h
fi les.

FA CTORY**4
Have you thought about variable scopes in Pascal? Byhaving different scopes forprogram s and
function s (because their variables are accessed by different opcodes) when a new variable is declared,
you ask the currentscope to manufacture a newsymbol instance that... you get the idea.

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/scope.h fi le, and its derived
classes may be found in thelib/scope/ derived.h andtool/scope/ derived.h fi les.

COPYRIGHT
ucsd-psystem-xcversion 0.13
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsd-psystem-xcprogram comes with ABSOLUTELY NO WARRANTY; for details see the LICENSE
fi le in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

Reference Manual ucsd-psystem-xc 22

Internals(1) Internals(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 23

Internals(1) Internals(1)

Reference Manual ucsd-psystem-xc 1000

